生きた細胞内のタンパク質発現量を推定するAI技術を開発
2024年10月24日(木)11時16分 PR TIMES
サイトロニクス株式会社(所在地:神奈川県川崎市/代表取締役CEO 今井快多 以下、サイトロニクス)は、株式会社ファンケル(本社:神奈川県横浜市/代表取締役社長 CEO 島田和幸 以下、ファンケル)と共同で、培養した細胞の画像を撮影するだけで、生きた細胞内に含まれる複数種のタンパク質を推定できるAI技術の開発に成功しましたことをお知らせします。
なお、本研究は学術雑誌BioengineeringのMachine Learning and Artificial Intelligence for Biomedical Applications, 2nd Edition ※1に掲載されました。
本成果は、培養した細胞を用いた研究に幅広く応用が可能であり、成分の有効性や安全性評価、老化のメカニズムなどの研究に生かしてまいります。
【生きたままの状態で複数の細胞内タンパク質発現量を推定する技術の開発】
<細胞内のタンパク質発現をAIで推定する>
通常細胞内のタンパク質発現を観察するには、免疫染色法※2という手法を用いています。免疫染色法は、ターゲットとするタンパク質を抗原抗体反応※3により染色して観察を行いますが、同時に観察可能なタンパク質の種類は2から4種類までと限定されています。さらに実験過程で細胞を固定※4する必要があるため、細胞が生きたままの状態で、タンパク質の観察は不可能でした。
そこで本研究では、細胞を生きたままの状態で細胞内のタンパク質を観察する方法の開発を目指しました。細胞にダメージを与えず撮像可能な位相差法※5による細胞の画像(位相差像)と、免疫染色法により細胞内のタンパク質を可視化した画像(免疫染色像)を機械学習させ、位相差像から免疫染色像を推定するAIモデルを構築しました。その結果、このAIモデルによる位相差像から、生きたままの状態で特定のタンパク質発現量を示す免疫染色像を推定することが可能となりました。
※1 Bioengineering:本記事はBioengineering 2024, 11(8), 774; https://doi.org/10.3390/bioengineering11080774 に掲載されています。
※2 免疫染色法:細胞内の特定のタンパク質を抗原抗体反応により染色して可視化する技術。観察には細胞を固定(生体活動を止める)する必要がある。
※3 抗原抗体反応:抗原(主に体内のタンパク質)と、そのタンパク質にだけ反応する抗体が結合すること。
※4 固定:細胞の生命活動を不可逆的に停止させること。
※5 位相差法:光学顕微鏡を用いて、光の回折、干渉を利用して、細胞内外の形態を観察するための方法。細胞を染色することなく、生きたままの状態で観察することが可能であり、細胞へのダメージも低いが、特定のタンパク質の発現量を観察することはできない。
この手法を用いて、ヒト表皮細胞※6による分化、炎症、老化、抗酸化※7に関わる細胞内に発現するタンパク質について検討を行いました。まず細胞の位相差像とそれぞれのタンパク質の免疫染色像を機械学習し、AIによる推定を行いました。その結果、免疫染色像から得られる各タンパク質の発現量と位相差像からAIが推定した発現量との関係がおおよそ一致しており、相関関係が確認されたことから、細胞内の発現量は、AIにより推定可能であることが示されました(図1)。
さらに、同手法を複数種のタンパク質に対して繰り返し行うことにより、1つの位相差画像から、複数のタンパク質を推定するAIモデルを構築致しました。
[画像1: https://prcdn.freetls.fastly.net/release_image/81877/8/81877-8-ee12a457f7685b0f1404dda474e37a81-1250x495.png?width=536&quality=85%2C75&format=jpeg&auto=webp&fit=bounds&bg-color=fff ]
[画像2: https://prcdn.freetls.fastly.net/release_image/81877/8/81877-8-5cc2f691ca45f3e8c13de3d03f1ee218-486x382.png?width=536&quality=85%2C75&format=jpeg&auto=webp&fit=bounds&bg-color=fff ]図1 免疫染色像とAIが推定した細胞内のタンパク質発現量の比較
上の画像は、細胞内の抗酸化タンパク質(DJ-1)を免疫染色による発現量とAIで推定した発現量を示し、概ね近い状況であることを確認。
左図は、AIで推定したタンパク質発現量(横軸)と免疫染色から測定したタンパク質量(縦軸)を示し、両数値には有意な相関を示したことから、生きた細胞内のタンパク質はAIにより推定可能である。
※6 ヒト表皮細胞;ヒト皮膚から単離された細胞で、皮膚の最外層である表皮を形成する細胞。外環境から体内を守るバリア機能を担う。
※7 分化、炎症、老化、抗酸化:本研究では、分化の指標タンパク質としてHsp27, GAL7、炎症としてInterleukin-1α (IL-1α), IL-6, NFkB、老化としてp21, p53, β-galactosidase (GLB1)、抗酸化としてDJ-1を用いている。
<ライブセルイメージング※8への応用>
本推定AIモデルは、細胞を生きたままの状態で複数のタンパク質を推定できることから、生きた状態で細胞内のタンパク質発現の経時変化をタイムラプス画像※9として見ることが可能となりました。そのため細胞内で起こるタンパク質の分化、炎症、老化や抗酸化などに関わる変化や、細胞の移動などの挙動と同時に時間を追って解析することに成功しました(図2および動画)。
※8 ライブセルイメージング:細胞を生きたままの状態で観察する方法。細胞内の構造や動きを観察することはできるが、細胞内に発現するタンパク質の変化を捉えることは困難。
※9 タイムラプス画像:一定の時間間隔をあけて連続的に撮影した画像。
[画像3: https://prcdn.freetls.fastly.net/release_image/81877/8/81877-8-bda75aad21a5d87dbc0b54ea9b06c6e6-436x486.png?width=536&quality=85%2C75&format=jpeg&auto=webp&fit=bounds&bg-color=fff ]図2 AIによる複数タンパク質の発現量の推定とタイムラプス画像
位相差像(左上)と細胞の核と細胞形状の蛍光像(右上)、およびAIによる分化(Hsp27, GAL7)、炎症(Interleukin-1α (IL-1α), IL-6, NFkB)、老化(p21, p53, β-galactosidase (GLB1))、抗酸化(DJ-1)の指標となる各タンパク質の推定像。
[画像4: https://prcdn.freetls.fastly.net/release_image/81877/8/81877-8-75929e0b0f68d0169f20f53159a066f2-248x248.png?width=536&quality=85%2C75&format=jpeg&auto=webp&fit=bounds&bg-color=fff ]AIによる複数タンパク質の発現を推定するタイムラプス動画
https://youtu.be/V-08H4jTi0Q
【研究背景・目的】
私たちの身体には、約37兆個の細胞が存在し、個々の細胞がそれぞれの特徴や環境に応じて変化し、細胞間でコミュニケーションを行いながら、生体の恒常性維持に寄与しています。細胞が織りなす様々な現象を理解するためには、個々の細胞の動きや細胞同士のコミュニケーションを観察しながら、細胞内でどのような変化が起きているか、経時的に解析することが重要と考えられます。近年、培養細胞の解析技術も発展は目覚ましく、免疫染色、ライブセルイメージング、次世代シーケンス※10、シングルセル解析※11など様々な手法が開発され、応用されています。しかし、細胞や細胞間の動きと細胞内の遺伝子やタンパク質の発現量を包括的、かつ経時的に解析することは未だに困難です。
本研究は、顕微鏡撮像と機械学習によるAI技術を用い、生きたままの状態で細胞内のタンパク質発現量を推定する技術の確立を行いました。
※10 次世代シーケンス:数千から数百万のDNA配列を同時に読み取る最先端の遺伝子解析技術。複数個体の遺伝子配列を同時に出力できるなど高速な処理が可能であり、個別化医療にも応用されている。細胞を生きたまま解析することはできない。
※11 シングルセル解析:従来の技術では、複数細胞の遺伝子をまとめて抽出し、遺伝子発現量の平均値を解析していたのに対して、1つ1つの細胞の遺伝子発現を個別に解析する技術。細胞を生きたまま解析することはできない。
【今後の展開】
本研究で確立した細胞内のタンパク質発現量を推定する新たなAI技術は、老化メカニズムの解明、皮膚科学理論の構築や素材成分の有効性試験・安全性試験など広く応用可能です。サイトロニクスは、今回担当した機械学習モデルの一連のフローを自動化するクラウドシステム構築で得られた知見を踏まえ、お客様に新しい価値を提供してまいります。
サイトロニクス株式会社について
サイトロニクスは、「デジタル技術で再生医療を身近な選択肢に」をミッションに掲げる東芝発の再生医療テック系スタートアップです。センシング、IoT、AI、クラウドといった先進のデジタル技術の最適活用を強みとし、ハードウェアからソフトウェアまでのシステム全体を自社で開発・設計することができ、再生医療やライフサイエンスの現場の課題解決に貢献します。
会社名:サイトロニクス株式会社
代表者:代表取締役CEO 今井快多
代表取締役CTO 香西昌平
所在地:神奈川県川崎市幸区新川崎7番7号
設立:2021年5月14日
事業内容:細胞培養管理のための装置及びソフトウェアの研究開発および提供
Webサイト:https://cytoronix.com
公式X:https://twitter.com/cytoronix
[画像5: https://prcdn.freetls.fastly.net/release_image/81877/8/81877-8-0dedf9c513c6616b7f253395400655b8-1453x349.jpg?width=536&quality=85%2C75&format=jpeg&auto=webp&fit=bounds&bg-color=fff ]
本件に関するお問い合わせ
サイトロニクス株式会社 広報担当
E-mail: info@cytoronix.com
なお、本研究は学術雑誌BioengineeringのMachine Learning and Artificial Intelligence for Biomedical Applications, 2nd Edition ※1に掲載されました。
本成果は、培養した細胞を用いた研究に幅広く応用が可能であり、成分の有効性や安全性評価、老化のメカニズムなどの研究に生かしてまいります。
【生きたままの状態で複数の細胞内タンパク質発現量を推定する技術の開発】
<細胞内のタンパク質発現をAIで推定する>
通常細胞内のタンパク質発現を観察するには、免疫染色法※2という手法を用いています。免疫染色法は、ターゲットとするタンパク質を抗原抗体反応※3により染色して観察を行いますが、同時に観察可能なタンパク質の種類は2から4種類までと限定されています。さらに実験過程で細胞を固定※4する必要があるため、細胞が生きたままの状態で、タンパク質の観察は不可能でした。
そこで本研究では、細胞を生きたままの状態で細胞内のタンパク質を観察する方法の開発を目指しました。細胞にダメージを与えず撮像可能な位相差法※5による細胞の画像(位相差像)と、免疫染色法により細胞内のタンパク質を可視化した画像(免疫染色像)を機械学習させ、位相差像から免疫染色像を推定するAIモデルを構築しました。その結果、このAIモデルによる位相差像から、生きたままの状態で特定のタンパク質発現量を示す免疫染色像を推定することが可能となりました。
※1 Bioengineering:本記事はBioengineering 2024, 11(8), 774; https://doi.org/10.3390/bioengineering11080774 に掲載されています。
※2 免疫染色法:細胞内の特定のタンパク質を抗原抗体反応により染色して可視化する技術。観察には細胞を固定(生体活動を止める)する必要がある。
※3 抗原抗体反応:抗原(主に体内のタンパク質)と、そのタンパク質にだけ反応する抗体が結合すること。
※4 固定:細胞の生命活動を不可逆的に停止させること。
※5 位相差法:光学顕微鏡を用いて、光の回折、干渉を利用して、細胞内外の形態を観察するための方法。細胞を染色することなく、生きたままの状態で観察することが可能であり、細胞へのダメージも低いが、特定のタンパク質の発現量を観察することはできない。
この手法を用いて、ヒト表皮細胞※6による分化、炎症、老化、抗酸化※7に関わる細胞内に発現するタンパク質について検討を行いました。まず細胞の位相差像とそれぞれのタンパク質の免疫染色像を機械学習し、AIによる推定を行いました。その結果、免疫染色像から得られる各タンパク質の発現量と位相差像からAIが推定した発現量との関係がおおよそ一致しており、相関関係が確認されたことから、細胞内の発現量は、AIにより推定可能であることが示されました(図1)。
さらに、同手法を複数種のタンパク質に対して繰り返し行うことにより、1つの位相差画像から、複数のタンパク質を推定するAIモデルを構築致しました。
[画像1: https://prcdn.freetls.fastly.net/release_image/81877/8/81877-8-ee12a457f7685b0f1404dda474e37a81-1250x495.png?width=536&quality=85%2C75&format=jpeg&auto=webp&fit=bounds&bg-color=fff ]
[画像2: https://prcdn.freetls.fastly.net/release_image/81877/8/81877-8-5cc2f691ca45f3e8c13de3d03f1ee218-486x382.png?width=536&quality=85%2C75&format=jpeg&auto=webp&fit=bounds&bg-color=fff ]図1 免疫染色像とAIが推定した細胞内のタンパク質発現量の比較
上の画像は、細胞内の抗酸化タンパク質(DJ-1)を免疫染色による発現量とAIで推定した発現量を示し、概ね近い状況であることを確認。
左図は、AIで推定したタンパク質発現量(横軸)と免疫染色から測定したタンパク質量(縦軸)を示し、両数値には有意な相関を示したことから、生きた細胞内のタンパク質はAIにより推定可能である。
※6 ヒト表皮細胞;ヒト皮膚から単離された細胞で、皮膚の最外層である表皮を形成する細胞。外環境から体内を守るバリア機能を担う。
※7 分化、炎症、老化、抗酸化:本研究では、分化の指標タンパク質としてHsp27, GAL7、炎症としてInterleukin-1α (IL-1α), IL-6, NFkB、老化としてp21, p53, β-galactosidase (GLB1)、抗酸化としてDJ-1を用いている。
<ライブセルイメージング※8への応用>
本推定AIモデルは、細胞を生きたままの状態で複数のタンパク質を推定できることから、生きた状態で細胞内のタンパク質発現の経時変化をタイムラプス画像※9として見ることが可能となりました。そのため細胞内で起こるタンパク質の分化、炎症、老化や抗酸化などに関わる変化や、細胞の移動などの挙動と同時に時間を追って解析することに成功しました(図2および動画)。
※8 ライブセルイメージング:細胞を生きたままの状態で観察する方法。細胞内の構造や動きを観察することはできるが、細胞内に発現するタンパク質の変化を捉えることは困難。
※9 タイムラプス画像:一定の時間間隔をあけて連続的に撮影した画像。
[画像3: https://prcdn.freetls.fastly.net/release_image/81877/8/81877-8-bda75aad21a5d87dbc0b54ea9b06c6e6-436x486.png?width=536&quality=85%2C75&format=jpeg&auto=webp&fit=bounds&bg-color=fff ]図2 AIによる複数タンパク質の発現量の推定とタイムラプス画像
位相差像(左上)と細胞の核と細胞形状の蛍光像(右上)、およびAIによる分化(Hsp27, GAL7)、炎症(Interleukin-1α (IL-1α), IL-6, NFkB)、老化(p21, p53, β-galactosidase (GLB1))、抗酸化(DJ-1)の指標となる各タンパク質の推定像。
[画像4: https://prcdn.freetls.fastly.net/release_image/81877/8/81877-8-75929e0b0f68d0169f20f53159a066f2-248x248.png?width=536&quality=85%2C75&format=jpeg&auto=webp&fit=bounds&bg-color=fff ]AIによる複数タンパク質の発現を推定するタイムラプス動画
https://youtu.be/V-08H4jTi0Q
【研究背景・目的】
私たちの身体には、約37兆個の細胞が存在し、個々の細胞がそれぞれの特徴や環境に応じて変化し、細胞間でコミュニケーションを行いながら、生体の恒常性維持に寄与しています。細胞が織りなす様々な現象を理解するためには、個々の細胞の動きや細胞同士のコミュニケーションを観察しながら、細胞内でどのような変化が起きているか、経時的に解析することが重要と考えられます。近年、培養細胞の解析技術も発展は目覚ましく、免疫染色、ライブセルイメージング、次世代シーケンス※10、シングルセル解析※11など様々な手法が開発され、応用されています。しかし、細胞や細胞間の動きと細胞内の遺伝子やタンパク質の発現量を包括的、かつ経時的に解析することは未だに困難です。
本研究は、顕微鏡撮像と機械学習によるAI技術を用い、生きたままの状態で細胞内のタンパク質発現量を推定する技術の確立を行いました。
※10 次世代シーケンス:数千から数百万のDNA配列を同時に読み取る最先端の遺伝子解析技術。複数個体の遺伝子配列を同時に出力できるなど高速な処理が可能であり、個別化医療にも応用されている。細胞を生きたまま解析することはできない。
※11 シングルセル解析:従来の技術では、複数細胞の遺伝子をまとめて抽出し、遺伝子発現量の平均値を解析していたのに対して、1つ1つの細胞の遺伝子発現を個別に解析する技術。細胞を生きたまま解析することはできない。
【今後の展開】
本研究で確立した細胞内のタンパク質発現量を推定する新たなAI技術は、老化メカニズムの解明、皮膚科学理論の構築や素材成分の有効性試験・安全性試験など広く応用可能です。サイトロニクスは、今回担当した機械学習モデルの一連のフローを自動化するクラウドシステム構築で得られた知見を踏まえ、お客様に新しい価値を提供してまいります。
サイトロニクス株式会社について
サイトロニクスは、「デジタル技術で再生医療を身近な選択肢に」をミッションに掲げる東芝発の再生医療テック系スタートアップです。センシング、IoT、AI、クラウドといった先進のデジタル技術の最適活用を強みとし、ハードウェアからソフトウェアまでのシステム全体を自社で開発・設計することができ、再生医療やライフサイエンスの現場の課題解決に貢献します。
会社名:サイトロニクス株式会社
代表者:代表取締役CEO 今井快多
代表取締役CTO 香西昌平
所在地:神奈川県川崎市幸区新川崎7番7号
設立:2021年5月14日
事業内容:細胞培養管理のための装置及びソフトウェアの研究開発および提供
Webサイト:https://cytoronix.com
公式X:https://twitter.com/cytoronix
[画像5: https://prcdn.freetls.fastly.net/release_image/81877/8/81877-8-0dedf9c513c6616b7f253395400655b8-1453x349.jpg?width=536&quality=85%2C75&format=jpeg&auto=webp&fit=bounds&bg-color=fff ]
本件に関するお問い合わせ
サイトロニクス株式会社 広報担当
E-mail: info@cytoronix.com